

MANCHESTER

Introduction to CMB Science Day 2

- Polarization Theory
- •Secondary Anisotropies
- Technical Issues
- Foregrounds
- •Experiments, results, the future

Polarization

- Linear polarization predicted by gravitational instability paradigm.
	- –If observed temperature anisotropies are result of primordial fluctuations, their presence at last scattering will polarize CMB anisotropies.
- Probes epoch of last scattering directly.
- \bullet Different sources of temperature anisotropies (scalar, vector and tensor) give different polarization patterns
- ~10 times lower, ~1 µK

Scalar Polarization

- • Relatively large because at last scattering photons likely to travel significant distance between scatterings
	- –By definition!
- Only occurs on causally-connected angular scales
	- –acoustic peaks when generated at last scattering
	- –Large scales when generated by re-ionization
- Somewhat smaller-scale than structure in total intensity as driven by gradients in brightness
- Polarized brightness up to 10% of total intensity fluctuations on small scales.

Tensor Polarization

- Driven by very-large scale gravitational waves generated in inflation
- • Essentially negligible on 'causal' scales, strongest below ℓ = 100 (~2°)

E-mode vs B-mode

- • Polarization pattern on sky can be separated into two orthogonal modes:
	- E-mode or gradient mode
	- –B-mode or curl mode
- \bullet For plane waves, E-modes polarized alternately parallel & perpendicular to wave vector
- $\,$ B-modes at 45 $^{\circ}$
- \bullet B-modes have opposite parity to E-modes
- \bullet B-modes only generated by tensor fluctuations

- • Names based on obscure & confusing analogy with EM fields; ignore!
- • (Polarization always refers to electric field orientation)

E-mode vs B-mode

Wayne Hu

±2Ylm:Spin-2 Spherical Harmonics

- • Polarization normally represented by Stokes parameters
	- $\mathbf{I} \propto |\mathsf{E}_{\mathsf{x}}|^2 + |\mathsf{E}_{\mathsf{y}}|^2$
		- Total intensity
	- $\textsf{Q}\varpropto|\textsf{E}_{\textsf{x}}|^{2}$ $|\textsf{E}_{\textsf{y}}|^{2}$
	- $\sf{U}\varpropto Re(E_xE_y$ *)
		- Linear polⁿ
	- $\mathsf{V}\propto |\mathsf{E}_\mathsf{R}|^2$ $|\mathsf{E}_\mathsf{L}|^2$
		- Circular polⁿ
- \bullet But depend on coordinate system defining x and y
- • Polarization is "Spin-2" quantity
	- orientation but no direction
- Analyse in terms of "spin-2 spherical harmonics " $\frac{H}{2}Y_{lm}$
- Harmonic coefficients can be summed & differenced to yield pure E- and B-modes
- E mode parity (-1) $^{\ell}$
- B mode parity $(-1)^{\ell+1}$
- •*almE,B* Coefficients coorddependent, but not Cℓ

Polarization \mathbf{C}_ℓ Spectra

- • E-mode peaks interleave with total power
- • E-mode correlated with Temp (Stokes I), alternately positive & negative
- • B-mode uncorrelated due to opposite parity
- •Note bump at ℓ < 10 due to scattering after re-ionization
- • Tensor mode only separable from scalar in B-mode pol (no scalar contribution)
- \bullet B-mode amplitude assumes maximum possible scalar-totensor ratio r

Parameters affecting Polarization

19th – 20th November 2005 ENIGMA Winter School

Secondary fluctuations

Gravity Early/Late ISW Rees-SciamaLensing

Local reionisation Thermal SZKinematic SZ

Global reionisation

Suppression VishniacNew Doppler

19th – 20th November 2005 ENIGMA Winter School

Gravitational Lensing

- • We see CMB through the distorting gravitational lens of the intervening large-scale structure.
- •Main effect is on scales \sim a few arcmin:
	- –lensing by massive clusters.
- \bullet Non-gaussian signal dominated by relatively isolated features
- \bullet Biggest impact is on B-mode polarization:
	- lensing does not alter polarization angle
	- does moves apparent source of radiation
	- Hence converts pure E-mode to give residual B-mode
	- $\,$ At low ℓ , quasi-point-source signal \rightarrow "white noise", constant \mathcal{C}_{ℓ}
	- Rolls off at ℓ > 1000 as clusters resolved
- Combination of total intensity and polarization allows lensing to be modelled in principle to reduce effect by \sim 1 order of magnitude, provided lenses well resolved.

Integrated Sachs-Wolfe Effect

- • CMB photons are affected by the fluctuating gravitational potential along line-of-sight.
	- –Gain energy (in local frame) as they enter a potential well (e.g. cluster)
	- –Lose energy as they leave
	- –If potential static no net effect
- ISW: effect of potentials evolving in time
	- –Largest if there is dark energy as this increases path length for given redshift.
- Will be correlated with forground structures (galaxy clusters etc)
	- Isolate via cross-correlation

Sunyaev-Zel'dovich Effect

- • Local re-ionisation of baryons in hot intracluster medium.
- CMB photons scattered off free electrons.
- \bullet Electrons $@$ 10⁸ K, vs 3-6 K for photons, so Inverse Compton (photons gain energy).
- $\,$ Optical depth τ ~ 10 $\,$ − 4 -10 − 3
	- Produces 'hole' in CMB below 200 GHz

- \bullet If cluster moving towards us, photons blue-shifted - Kinematic S-Z effect.
	- Hard to measure as distortion has Planck spectrum

Observed S-Z effect

- \bullet Results from Carlstrom group (Grego et al 2001)
- More evidence that CMB is at high redshift!

Global reionization

- • Does occur:
	- –Absence of Gunn-Peterson trough at z < 6
- Suppresses power on small scales (*ℓ* >>10).
- •Large scales unaffected.
- \bullet New anisotropies arise on new scattering surfaces.
- Polarization signature
- Ostriker-Vishniac effect (*ℓ* ~ 10000)

Contributions to \mathbf{C}_ℓ spectrum

Technical Issues

- •Sample & cosmic variance
- •**Sensitivity**
- Detector Technologies
- Differential measurement
- How to avoid deconvolution
- C *ℓ* window functions

Cosmic Variance

•Estimate of C_l from full sky data is:

$$
\widetilde{C}_l = \frac{1}{2l+1} \sum_{m=-l}^{l} a_{lm} a_{lm}^* = \frac{1}{2l+1} \left\{ a_{l0}^2 + \sum_{m=1}^{l} 2 \left[\Re(a_{lm})^2 + \Im(a_{lm})^2 \right] \right\}
$$

- Negative-*m* terms duplicate positive-*m* terms due to reality condition.
- $-$ Since $\langle a_{lm}^{} a_{lm}^{}^* \rangle = C_l^{}$ for all m , the variance of its real and imaginary parts for m ≠ 0 is *Cl/*2.
- $(2l + 1)\ddot{C}_l$ / C_l is a sum of unit-variance Gaussians: χ^2 distributed, with (2 *ℓ*+1) degrees of freedom: $\big(2l +1 \big) \widetilde{C}_l$ / C_l $(2l+1)\widetilde{C}$

– mean (2 *ℓ*+1), variance 2(2 *ℓ*+1)

• So even ideal measurement of the sky only gives a fractional accuracy of √[2/(2*t*+1)] for each C^+_l cosmic variance

Sample Variance

- • By the same token, in small fields, few independent fluctuations: cannot get higher SNR than 1/ \sqrt{N} where *N* is the number of uncorrelated regions/modes: sample variance.
	- Moral: no point in observing to SNR > 2 in small areas: better to do more sky at lower SNR.
- Polarization measurements also independent (nearly) \rightarrow another 2ℓ+1 samples from all-sky E-mode spectrum
	- –If you can measure it to SNR > 1!
- Since C_ℓ quite smooth, can improve SNR by binning.

Noise in C, Spectra

- • 'White noise': any random function on the sky with negligible correlation length
	- –Instrumental noise (not necessarily constant rms per pixel)
	- Randomly distributed point sources
- •Its *Cℓ* spectrum is constant, say *Nℓ*
- \bullet Sky+noise is sum of uncorrelated variables so variances add:

$$
\sigma(C_l) = \sqrt{\frac{2}{2l+1}}(C_l + N_l)
$$

- •NB: *N_ℓ* from instrumental noise is inversely prop. to observing
time — hence errors in C*ℓ* fall as direct inverse of time! C_{ℓ} fall as direct inverse of time! Until you hit cosmic variance limit …
- \bullet *N_ℓ* from point sources is dominated by the brightest sources
(unlike confusion in maps). Find and subtract them!

At least 10 µK sensitivity needed So need B large, τ long.

19th – 20th November 2005 ENIGMA Winter School

To amplify or not?

- Amplification: allows replication of signal, required to operate synthesis array, useful for polarimetry
- But inevitably adds noise even in ideal case, especially at hv $\rm \sim kT_b$
- To avoid amplification need very cold (0.1 K) detectors, held at very stable temperature.
- Upshot: bolometers best at > 90 GHz, amplifiers below.

State-of-the art Receivers

- • MIC Amplifiers up to 120 GHz
	- cool to 15K
	- – T_{sys} =10 K at 33 GHz, state of the art.
	- –Rule of thumb is 1/3 K per GHz.
	- –7 times worse than quantum limits, limited by internal noise
	- –20% bandwidth, defined (not very well) by tuned circuits
- Bolometers 100 GHz to infrared.
	- cooled to 0.1K
	- 30-50% bandwidth
	- –Custom filters (Cardiff University)
	- –7 times worse that quantum limits, limited by losses in filters etc (nearly perfect detectors)

Bandpasses

 \bullet

WMAP • Boomerang

BOOMERANG Instrumentation

Focal Plane:

Cooled to 0.28 K in helium dewar

• Spider-web Bolometer: micromachined mesh of silicon nitride Germanium thermistor at centre

Polarization-Sensitive Bolometers

- • Two planes of absorbing mesh, with orthogonal wires.
- Each rejects 'wrong' polarization with 90- 95% efficiency
- Used on Boomerang 2003 flight, QUaD experiment, *Planck* HFI, etc.

• Typical layout: Boomerang 2003 design

Corrugated Horns for clean beams

- • Large:
	- 15 GHz feeds on Tenerife experiment
- \bullet Small:
	- 145 GHz Boomerang feeds

Sources of error (1)

- Statistical noise
	- – instrumental, at limits of current receiver technology.
	- –cool receivers
	- – atmospheric, emission from water vapour not uniform
	- –observe at high altitude, poles or space.
	- –Intrinsic signal fluctuations

Sources of error (2)

Systematic

- – Gain stability: slow drifts in gain produce 1/f noise, especially in amplifiers
- – Enhanced by any instability in physical temp, esp. in bolometers
- –Microphonics
- CR hits
- • Foregrounds
	- –Earth, sun or moon in sidelobes - screen.
	- – Galactic emission, synchrotron, free-free and dust spectral differentiation.
	- –Radio sources - spatial differentiation.

Differential Measurement (1)

• µK signals vs Several K offset (CMB + instrumental + atmospheric):

Measure Differential T! PSD to cancel offsets

- COBE, WMAP measured ∆T between beams pointing at large angles (1 or 2 radians)
	- Reconstruct sky from many differences with different orientations
	- Typically residual offset 0.5 K from instrumental matching

COBE DMR:Differential Microwave Radiometer

Differential Measurement (2)

- • Planck Low Frequency Instrument (LFI) measures (sky-load) using on-board 4 K noise source
- \bullet Most instruments repeatedly 'chop' between target and reference
	- Spin scanning in satellite & some ground experiments.
- • Multiplying interferometers effectively 'chop' between sine and cosine channels, cancelling uniform signals.
- • Polarimeters:
	- – Differencing:
		- $Q=|E_{x}|^{2}-|E_{y}|^{2}$
		- Limited by gain errors
	- Multiplying: $Q+iU = \langle E_R E_L^* \rangle$
		- •Limited by R vs. L leakage
	- Nearly ideal, as differencing through identical optics, identical patch of sky

Planck LFI receiver

- • Hybrids mix signal from sky & load to give sum & difference. Hence both signals pass through same amplifiers and have same gain.
- Second hybrid unmixes signals
- \bullet Phase switch flips signals alternately between backend amplifiers, allowing PSD to remove backend offsets and drifts.

Avoiding Deconvolution

- • Deconvolution algorithms work best with substantial prior information, esp. nearly empty and all-positive sky
	- CMB fails on both counts
- • Error propagation in nonlinear deconvolution a nightmare: only possible approach is huge Monte Carlo analysis: not practical for large images.
- 1. Minimize need for deconvolution by making beam very pure
	- •e.g. Planck `Airy rings' < [−]30 dB below peak
	- • Make beam circular so orientation does not affect flux at given sky position
- 2. Measure harmonic directly: for interferometers 'Visibilities' are direct measure of *alm*
- 3. Compare "dirty" data directly to theoretical models folded through instrumental response.

Window functions

- Theoretical a_{lm} analysis assumes all sky coverage and infinite resolution.
- Window function how sensitive experiment is to each *ℓ* value
- Measured anisotropy is multiplied by window function.

Example window function

- • Window functions for the two spacings of the 33 GHz interferometer on **Tenerife**
- Window functions depend on the telescope beam and the observing mode

MANCHESTER

Foregrounds

- • Thermal Dust:
	- – COBE FIRAS, Planck HFI
- Anomalous Dust:
	- COSMOSOMAS, WMAP, Planck LFI
- \bullet Free-free / Synchrotron:
	- Arecibo, C-BASS, Planck LFI
- AGN & SZ clusters
	- –OCRA, Planck

Foreground SED (?)

- • RMS amplitudes on 1° scales
	- CMB
	- Thermal & Anomalous dust
	- Synchrotron
	- Free-Free

Polarized Foreground SED (???)

Foreground Removal

- •CMB T, E dominates at high latitudes (e.g. WMAP)
- \bullet BUT Planck is not a detection experiment: precise measurement requires accurate subtraction.
- \bullet Planck polarization sensitivity relies on (nearly) fullsky coverage
	- –Not just 'clean' regions!
- Crucial B-modes <3% of E-mode: under foregrounds nearly everywhere

COSMOSOMAS

- • "Cosmological Structures on Medium Angular Scales"
- \bullet 11-16 GHz strip survey, 1° beam
- 3 fixed receivers fed by rotating flat mirrors.
- • Operated on Tenerife by IAC, with major design & operation input from R. A. Watson.

Anomalous Dust

Models of Anomalous Emission

- • Synchrotron (WMAP team)
	- X
	- – Why correlated with Cirrus clouds at high latitude?
	- Rising spectrum at 10 GHz
- \bullet Free-Free (Leitch et al.)
	- X
	- –Poor correlation with H α
	- –Rising spectrum
- • Spinning VSGs (Draine & Lazarian 1997)
	- \sim maybe
	- \rightarrow Weakly polarized
- • Magnetic dipole transitions in large grains (Lazarian & Draine 1998)
	- \sim maybe
	- \rightarrow Moderately polarized

Anomalous Dust

- • Exact spectrum?
	- –Subtract free-free, synchrotron etc
- Distribution and correlation with other components?
- Polarization?
	- – Diagnostic of spinning VSGs vs. magnetic dipole transitions in large grains

Synchrotron: Cosmic Ray Physics

- • Synchrotron emission traces the life-cycle of cosmic rays
	- – Acceleration processes and sites
		- Shocks?
		- Re-connection?
	- Diffusion/convection
	- – Scattering from Alfvén waves
	- Radiative losses

Stockert 25-m and Villa Elisa 30-m Reich, Testori & Reich 2004

•Short-λ polarization → B-field angle

Existing Spectral Index Data

- • From Reich, Reich & Testori (2004)
	- 5° resolution
- Substantial structure
	- $O(1)$ subtraction errors if not accounted for

Synchrotron Polarization

- •**Synchrotron** polarization varies with frequency for curved spectra (as expected in the Galaxy).
- \bullet Detail of variation depends on B-field geometry, dependence of electron energy on pitch angle.
	- –Diagnostic of scattering efficiency.

CMB Experiments

You can observe a lot just by watchin'

Yogi Berra

Observations of CMB fluctuations

- • 1992: DMR instrument on COBE satellite detects Sachs-Wolfe fluctuations with δ_k ≈ 2×10 − 5.
- \bullet 1992-2000: many instruments detect fluctuations on both large and small scales.
- 2000: BOOMERanG balloon experiment confirms 1st acoustic peak at / ≈ 220 \rightarrow nearly flat universe, Ω_{0} ≈ 1.
- 2000: Cosmic Backgound Imager confirms damping.
- 2001: BOOMERanG and DASI confirm 2nd peak.

4 years of data from COBE

BOOMERanG Launch

뜐

BOOMERanG (contd)

Gondola

MANCHES Δ ['] В. 06 180°

MAXIMA

Millimeter Anisotropy eXperiment IMaging Array

MAXIMA Focal Plane

 $19th - 20th$ November 2005

ENIGMA Winter School

BOOMERanG vs. COBE

MAXIMA map

 $19th - 20th$ November 2005

ENIGMA Winter School

BOOMERanG vs. Simulations

2002 Angular Power Spectrum

FIG. 2. Combination of all data from Figure 1. These error bars include the effects of beam and calibration uncertainties, which causes long-range correlations of order 10% over the peaks. In addition, points tend to be anti-correlated with their nearest neighbors, 19th – 20th Nove typically at the level of a few percent. The horizontal bars give the rms widths of the window functions.

Constraints

- \bullet Two independent teams find same results for SNIa
- \bullet With $\Omega_{\sf m}\approx 0.3,$
- $\bullet \;\; \Rightarrow \Omega_{\Lambda}^{} \! \approx 0.7.$
- \bullet Implies flat universe: $\Omega_{\rm 0}$ ≈ 1 .
- \bullet Concordance Model.
- \bullet Worry: cosmological evolution of SNIa?

Cosmic Contents

B2K3 Flight

ENIGMA Winter School

Very Small Array

Cryostats on table

Source subtraction dishes

VSA maps

VSA Spectrum

ER **MANCHE**

Cosmic Background Interferometer

WMAP: L2 Orbit

19th – 20th November 2005 ENIGMA Winter School

MANCHESTER

WMAP: Scanning

A Flat Universe?

19th – 20th November 2005 ENIGMA Winter School

MANCHESTER

Old Universe - New Numbers

 Ω_{tot} = 1.02 ± 0.02 Ω_{tot} = 1.02 ± 0.02
 $W < -0.78$ (95% CL)
 $\Omega_b \Omega_m^{-1} = 0.17 \pm 0.01$
 $\Omega_b \Omega_m^{-1} = 0.17 \pm 0.01$
 $\Omega_b \Omega_m^{-1} = 0.17 \pm 0.01$ $\sigma_8 = 0.84 \pm 0.04$ $\Omega_h h^2$ = 0.0224 ± 0.0009 $\sigma_8 \Omega_m^{0.5} = 0.44_{-0.05}^{+0.04}$ $\Omega_b = 0.044 \pm 0.004$ Z_{dec} = 1089 \pm 1 $n_b = (2.5 \pm 0.1) \times 10^{-7}$ cm⁻³ Δz_{dec} = 195 ± 2 $\Omega_m h^2$ = 0.135 $^{+0.008}_{-0.009}$ $h = 0.71_{-0.03}^{+0.04}$ Ω_m = 0.27 ± 0.04 $r_{\rm s}$ = 147 ±2 Mpc $\Omega_v h^2$ < 0.0076 (95% CL) d_C = 14.0 $^{+0.2}_{-0.3}$ Gpc m_v < 0.23 eV (95% CL) θ_4 = 0. 2598 ± 0. 002 T_{cmb} = 2.725 ±0.002 K l_4 = 301 ±1 Z_r = 20 $^{+10}_{-9}$ (95% CL) t_0 = 13.7 ±0.2 Gyr t_r = 180 $^{+220}_{-80}$ Myr (95% CL) t_{dec} = 379 $^{+8}_{-7}$ kyr $r(k_0=0.002 \text{ Mpc}^{-1})$ < 0.71(95% CL) $\Delta t_{\rm dec}$ = 118 $^{+3}_{-2}$ kyr $A(k_0=0.05 \text{ Mpc}^{-1}) = 0.833 \pm 0.086 \pm 0.083$ $Z_{\text{eq}} = 3233_{-210}^{+194}$ n_{γ} = 410.4 \pm 0.9 cm⁻³ $\tau = 0.17 \pm 0.04$ $n_s = 0.99 \pm 0.04$ (WMAP only) $n_s(k_0=0.05 \text{ Mpc}^{-1})$ = 0.93 ±0.03 with $dn_s/d \ln k$ = -0.031 $^{+0.016}_{-0.018}$

These "best" cosmological parameter values are from a combination of a wide variety of cosmological measurements, including the WMAP, COBE, CBI, and ACBAR CMB measurements and 2dFGRS, HST, SNIa, and Lyman-alpha forest measurements.

CMB Results since WMAP

- •VSA high-*ℓ* results (2004)
- •CBI Polarization (2004)
- •ARCHEOPS Dust Polarization (2004)
- •COSMOSOMAS Spinning Dust (2005)
- •Boomerang Polarization (2005)
- •WMAP NG analysis (2003-05)
- •WMAP, VSA, CBI still observing.

Summary of current data

Current Polarization Results

Weird Cosmology

- •A Compact Universe?
- • Signatures:
	- Repeating structures (cosmic crystallography)
		- Not seen yet
	- –Less power at very low ℓ
		- Yes!
	- – Circles in the sky
		- No, still looking

Weird Cosmology

- • Non-Gaussianity
	- –Any sign of structure in the phase of CMB fluctuations signals physics beyond the inflationary paradigm
- • Axis of Evil:
	- –Quadrupole and octopole line up!
- \bullet North vs. South
	- Peculiar structures in southern Eliptic/Galactic hemisphere.

Tegmark et al. 2003

•

ESA's *Planck* mission

- "Last word" in CMB temperature observations: accuracy set by foreground residuals
	- Resolve "cosmic degeneracies"
	- – Non-Gaussian cosmology
		- •Clusters: SZ, lensing
		- **Strings**
		- •???
	- \rightarrow Galactic & extragalactic astronomy
- \bullet Polarization: best power spectrum yet
	- –Low SNR but 12 million pixels
- \bullet First chance of detecting primordial B-mode polarization

Planck mission status

- • November 2005:
	- – Delivery of Flight Model components ongoing
- •Launch: August 3rd 2007
- •PV Phase: Oct-Dec 2007
- \bullet Survey starts: Jan 2008
- •Survey ends: Feb 2009
- • Proprietary period ends: Feb 2011.

 Planck Cryo Qualification Model under test at CSL, Liège.

Planck Instrument

- • LFI front end connected to warm backend in service module via waveguides.
- Elaborate thermal control to keep 250 K temperature differential
- Also lines to coolers in the SM.
- HFI self-contained in helium dewar, only data connections to SM.

South Pole: QUaD

Uses old DASI mount

19th – 20th November 2005 ENIGMA Winter School

South Pole: BICEP

New Projects

- \bullet *Planck*
	- All-sky, high precision
	- High-*ℓ*
	- CMB & foreground polⁿ
- \bullet Balloon
	- – Boomerang 2K3 (Dust pol n)
	- EBEX (Pol n)
	- – SPIDR (Pol n)
- • Ground-based:
	- – QUAD (Pol n)
	- BICEP (Pol n)
	- CLOVER (Pol n)
	- GEM-P (Synchrotron pol n)
	- – QUIET (Pol n)
	- –VSA+ (Higher *ℓ*)
	- – C-BASS (Synchrotron pol n)

