MANCHESTER

Introduction to CMB Science Day 2

- Polarization Theory
- Secondary Anisotropies
- Technical Issues
- Foregrounds
- Experiments, results, the future

Polarization

- Linear polarization predicted by gravitational instability paradigm.
 - If observed temperature anisotropies are result of primordial fluctuations, their presence at last scattering will polarize CMB anisotropies.
- Probes epoch of last scattering directly.
- Different sources of temperature anisotropies (scalar, vector and tensor) give different polarization patterns
- ~10 times lower, ~1 μ K

MANCHESTER

Generation of polarized CMB radiation by Thomson scattering (Hu)

Scalar Polarization

- Relatively large because at last scattering photons likely to travel significant distance between scatterings
 - By definition!
- Only occurs on causally-connected angular scales
 - acoustic peaks when generated at last scattering
 - Large scales when generated by re-ionization
- Somewhat smaller-scale than structure in total intensity as driven by gradients in brightness
- Polarized brightness up to 10% of total intensity fluctuations on small scales.

Tensor Polarization

- Driven by very-large scale gravitational waves generated in inflation
- Essentially negligible on 'causal' scales, strongest below l = 100 (~2°)

E-mode vs B-mode

- Polarization pattern on sky can be separated into two orthogonal modes:
 - E-mode or gradient mode
 - B-mode or curl mode
- For plane waves, E-modes polarized alternately parallel & perpendicular to wave vector
- B-modes at 45°
- B-modes have opposite parity to E-modes
- B-modes only generated by tensor fluctuations

- Names based on obscure & confusing analogy with EM fields; ignore!
- (Polarization always refers to electric field orientation)

E-mode vs B-mode

Wayne Hu

$_{\pm 2}Y_{lm}$: Spin-2 Spherical Harmonics

- Polarization normally represented by Stokes parameters
 - $\mathbf{I} \propto |\mathbf{E}_{\mathbf{x}}|^2 + |\mathbf{E}_{\mathbf{y}}|^2$
 - Total intensity
 - $\mathbf{Q} \propto |\mathbf{E}_{\mathsf{x}}|^2 |\mathbf{E}_{\mathsf{y}}|^2$
 - $U \propto \text{Re}(\text{E}_{x}\text{E}_{y}^{*})$
 - Linear polⁿ
 - $V \propto |E_R|^2 |E_L|^2$
 - Circular polⁿ
- But depend on coordinate system defining x and y

- Polarization is "Spin-2" quantity
 - orientation but no direction
- Analyse in terms of "spin-2 spherical harmonics" $_{\pm 2}Y_{lm}$
- Harmonic coefficients can be summed & differenced to yield pure E- and B-modes
- E mode parity (-1)^{*l*}
- B mode parity (-1)^{l+1}
- *a*_{*lm*}^{*E,B*} Coefficients coorddependent, but not C_ℓ

Polarization C_{ℓ} Spectra

- E-mode peaks interleave with total power
- E-mode correlated with Temp (Stokes I), alternately positive & negative
- B-mode uncorrelated due to opposite parity
- Note bump at l < 10 due to scattering after re-ionization
- Tensor mode only separable from scalar in B-mode pol (no scalar contribution)
- B-mode amplitude assumes maximum possible scalar-totensor ratio r

Hu & Dodelson, (2002)

Parameters affecting Polarization

Secondary fluctuations

Gravity Early/Late ISW Rees-Sciama Lensing

Local Thermal SZ reionisation Kinematic SZ

Global reionisation

Suppression Vishniac New Doppler

19th – 20th November 2005

Gravitational Lensing

- We see CMB through the distorting gravitational lens of the intervening large-scale structure.
- Main effect is on scales ~ a few arcmin:
 - lensing by massive clusters.
- Non-gaussian signal dominated by relatively isolated features
- Biggest impact is on B-mode polarization:
 - lensing does not alter polarization angle
 - does moves apparent source of radiation
 - Hence converts pure E-mode to give residual B-mode
 - At low ℓ , quasi-point-source signal \rightarrow "white noise", constant C_{ℓ}
 - Rolls off at { > 1000 as clusters resolved
- Combination of total intensity and polarization allows lensing to be modelled in principle to reduce effect by ~ 1 order of magnitude, provided lenses well resolved.

Integrated Sachs-Wolfe Effect

- CMB photons are affected by the fluctuating gravitational potential along line-of-sight.
 - Gain energy (in local frame) as they enter a potential well (e.g. cluster)
 - Lose energy as they leave
 - If potential static no net effect
- ISW: effect of potentials evolving in time
 - Largest if there is dark energy as this increases path length for given redshift.
- Will be correlated with forground structures (galaxy clusters etc)
 - Isolate via cross-correlation

Sunyaev-Zel'dovich Effect

- Local re-ionisation of baryons in hot intracluster medium.
- CMB photons scattered off free electrons.
- Electrons @ 10⁸ K, vs 3-6 K for photons, so Inverse Compton (photons gain energy).
- Optical depth $\tau \sim 10^{-4} 10^{-3}$
 - Produces 'hole' in CMB below 200 GHz

- If cluster moving towards us, photons blue-shifted -Kinematic S-Z effect.
 - Hard to measure as distortion has Planck spectrum

Observed S-Z effect

- Results from Carlstrom group (Grego et al 2001)
- More evidence that CMB is at high redshift!

12

11

Global reionization

- Does occur:
 - Absence of Gunn-Peterson trough at z < 6
- Suppresses power on small scales (*l* >>10).
- Large scales unaffected.
- New anisotropies arise on new scattering surfaces.
- Polarization signature
- Ostriker-Vishniac effect (*l* ~ 10000)

Contributions to C_{ℓ} spectrum

Technical Issues

- Sample & cosmic variance
- Sensitivity
- Detector Technologies
- Differential measurement
- How to avoid deconvolution
- C_l window functions

MANCHESTER

Cosmic Variance

• Estimate of C_l from full sky data is:

$$\widetilde{C}_{l} = \frac{1}{2l+1} \sum_{m=-l}^{l} a_{lm} a_{lm}^{*} = \frac{1}{2l+1} \left\{ a_{l0}^{2} + \sum_{m=1}^{l} 2 \left[\Re(a_{lm})^{2} + \Im(a_{lm})^{2} \right] \right\}$$

- Negative-*m* terms duplicate positive-*m* terms due to reality condition.
- Since $\langle a_{lm} a_{lm}^* \rangle = C_l$ for all *m*, the variance of its real and imaginary parts for $m \neq 0$ is $C_l/2$.
- $(2l+1)\widetilde{C}_l / C_l$ is a sum of unit-variance Gaussians: χ^2 distributed, with (2l+1) degrees of freedom:

- mean $(2\ell+1)$, variance $2(2\ell+1)$

• So even ideal measurement of the sky only gives a fractional accuracy of $\sqrt{[2/(2\ell+1)]}$ for each C_l : cosmic variance

Sample Variance

- By the same token, in small fields, few independent fluctuations: cannot get higher SNR than $1/\sqrt{N}$ where N is the number of uncorrelated regions/modes: sample variance.
 - Moral: no point in observing to SNR > 2 in small areas: better to do more sky at lower SNR.
- Polarization measurements also independent (nearly)
 → another 2ℓ+1 samples from all-sky E-mode
 spectrum
 - If you can measure it to SNR > 1!
- Since C_{ℓ} quite smooth, can improve SNR by binning.

Noise in C_{ℓ} Spectra

- 'White noise': any random function on the sky with negligible correlation length
 - Instrumental noise (not necessarily constant rms per pixel)
 - Randomly distributed point sources
- Its C_{ℓ} spectrum is constant, say N_{ℓ}
- Sky+noise is sum of uncorrelated variables so variances add:

$$\sigma(C_l) = \sqrt{\frac{2}{2l+1}} (C_l + N_l)$$

- NB: N_l from instrumental noise is inversely prop. to observing time hence errors in C_l fall as direct inverse of time!
 Until you hit cosmic variance limit...
- N_{ℓ} from point sources is dominated by the brightest sources (unlike confusion in maps). Find and subtract them!

MANCHESTER

Sensitivity

At least 10 μ K sensitivity needed So need B large, τ long.

MANCHESTER

To amplify or not?

- Amplification: allows replication of signal, required to operate synthesis array, useful for polarimetry
- But inevitably adds noise even in ideal case, especially at $h\nu \! > \! \sim kT_b$
- To avoid amplification need very cold (0.1 K) detectors, held at very stable temperature.
- Upshot: bolometers best at > 90 GHz, amplifiers below.

State-of-the art Receivers

- MIC Amplifiers up to 120 GHz
 - cool to 15K
 - T_{sys} =10 K at 33 GHz, state of the art.
 - Rule of thumb is 1/3 K per GHz.
 - 7 times worse than quantum limits, limited by internal noise
 - 20% bandwidth, defined (not very well) by tuned circuits
- Bolometers 100 GHz to infrared.
 - cooled to 0.1K
 - 30-50% bandwidth
 - Custom filters (Cardiff University)
 - 7 times worse that quantum limits, limited by losses in filters etc (nearly perfect detectors)

Bandpasses

• WMAP

Boomerang

BOOMERANG Instrumentation

Focal Plane:

Cooled to 0.28 K in helium dewar

 Spider-web Bolometer: micromachined mesh of silicon nitride Germanium thermistor at centre

Polarization-Sensitive Bolometers

- Two planes of absorbing mesh, with orthogonal wires.
- Each rejects 'wrong' polarization with 90-95% efficiency
- Used on Boomerang 2003 flight, QUaD experiment, *Planck* HFI, etc.

PSB Optics

Corrugated reconcentrating feed

Typical layout: Boomerang 2003 design

Ĥ

Corrugated Horns for clean beams

- Large:
 - 15 GHz feeds on Tenerife experiment
- Small:
 - 145 GHz Boomerang feeds

Sources of error (1)

- Statistical noise
 - instrumental, at limits of current receiver technology.
 - cool receivers
 - atmospheric, emission from water vapour not uniform
 - observe at high altitude, poles or space.
 - Intrinsic signal fluctuations

Sources of error (2)

Systematic

- Gain stability: slow drifts in gain produce 1/f noise, especially in amplifiers
- Enhanced by any instability in physical temp, esp. in bolometers
- Microphonics
- CR hits
- Foregrounds
 - Earth, sun or moon in sidelobes screen.
 - Galactic emission, synchrotron, free-free and dust spectral differentiation.
 - Radio sources spatial differentiation.

Differential Measurement (1)

 µK signals vs Several K offset (CMB + instrumental + atmospheric):

Measure Differential T! PSD to cancel offsets

- COBE, WMAP measured ΔT between beams pointing at large angles (1 or 2 radians)
 - Reconstruct sky from many differences with different orientations
 - Typically residual offset
 0.5 K from instrumental matching

COBE DMR: Differential Microwave Radiometer

Differential Measurement (2)

- Planck Low Frequency Instrument (LFI) measures (sky-load) using on-board 4 K noise source
- Most instruments repeatedly 'chop' between target and reference
 - Spin scanning in satellite & some ground experiments.
- Multiplying interferometers effectively 'chop' between sine and cosine channels, cancelling uniform signals.

- Polarimeters:
 - Differencing:
 - $Q = |E_x|^2 |E_y|^2$
 - Limited by gain errors
 - Multiplying: $Q+iU = \langle E_R E_L^* \rangle$
 - Limited by R vs. L leakage
 - Nearly ideal, as differencing through identical optics, identical patch of sky

Planck LFI receiver

- Hybrids mix signal from sky & load to give sum & difference. Hence both signals pass through same amplifiers and have same gain.
- Second hybrid unmixes signals
- Phase switch flips signals alternately between backend amplifiers, allowing PSD to remove backend offsets and drifts.

Avoiding Deconvolution

- Deconvolution algorithms work best with substantial prior information, esp. nearly empty and all-positive sky
 - CMB fails on both counts
- Error propagation in nonlinear deconvolution a nightmare: only possible approach is huge Monte Carlo analysis: not practical for large images.
- Minimize need for deconvolution by making beam very pure
 - e.g. Planck `Airy rings'
 < -30 dB below peak
 - Make beam circular so orientation does not affect flux at given sky position
- 2. Measure harmonic directly: for interferometers 'Visibilities' are direct measure of a_{lm}
- 3. Compare "dirty" data directly to theoretical models folded through instrumental response.

MANCHESTER

Window functions

- Theoretical a_{lm} analysis assumes all sky coverage and infinite resolution.
- Window function how sensitive experiment is to each *l* value
- Measured anisotropy is multiplied by window function.

Example window function

- Window functions for the two spacings of the 33 GHz interferometer on Tenerife
- Window functions depend on the telescope beam and the observing mode

H

MANCHEST

Foregrounds

- Thermal Dust:
 - COBE FIRAS, Planck HFI
- Anomalous Dust:
 - COSMOSOMAS, WMAP, Planck LFI
- Free-free / Synchrotron:
 - Arecibo, C-BASS, Planck LFI
- AGN & SZ clusters
 - OCRA, Planck

Foreground SED (?)

- RMS amplitudes on 1° scales
 - CMB
 - Thermal &
 Anomalous dust
 - Synchrotron
 - Free-Free

Polarized Foreground SED (???)

19th – 20th November 2005

Foreground Removal

- CMB T, E dominates at high latitudes (e.g. WMAP)
- BUT Planck is not a detection experiment: precise measurement requires accurate subtraction.
- Planck polarization sensitivity relies on (nearly) fullsky coverage
 - Not just 'clean' regions!
- Crucial B-modes <3% of E-mode: under foregrounds nearly everywhere

COSMOSOMAS

- "Cosmological Structures on Medium Angular Scales"
- 11-16 GHz strip survey, 1° beam
- 3 fixed receivers fed by rotating flat mirrors.
- Operated on Tenerife by IAC, with major design & operation input from R. A. Watson.

Anomalous Dust

19th – 20th November 2005

Models of Anomalous Emission

- Synchrotron (WMAP team)
 - **X**
 - Why correlated with Cirrus clouds at high latitude?
 - Rising spectrum at 10 GHz
- Free-Free (Leitch et al.)
 - X
 - Poor correlation with $\text{H}\alpha$
 - Rising spectrum

- Spinning VSGs (Draine & Lazarian 1997)
 - ~ maybe
 - \rightarrow Weakly polarized
- Magnetic dipole transitions in large grains (Lazarian & Draine 1998)
 - ~ maybe
 - \rightarrow Moderately polarized

MANCHESTER

Anomalous Dust

- Exact spectrum?
 - Subtract free-free, synchrotron etc
- Distribution and correlation with other components?
- Polarization?
 - Diagnostic of spinning VSGs vs. magnetic dipole transitions in large grains

Synchrotron: Cosmic Ray Physics

- Synchrotron emission traces the life-cycle of cosmic rays
 - Acceleration processes and sites
 - Shocks?
 - Re-connection?
 - Diffusion/convection
 - Scattering from Alfvén waves
 - Radiative losses

Reich, Testori & Reich 2004

 Short-λ polarization → B-field angle

Existing Spectral Index Data

- From Reich, Reich & Testori (2004)
 - 5° resolution
- Substantial structure
 - O(1) subtraction
 errors if not
 accounted for

Synchrotron Polarization

- Synchrotron polarization varies with frequency for curved spectra (as expected in the Galaxy).
- Detail of variation depends on B-field geometry, dependence of electron energy on pitch angle.
 - Diagnostic of scattering efficiency.

Degree of polarization vs. scaled frequency for "single burst" spectral ageing model (Leahy, Black & Chan in prep.)

CMB Experiments

You can observe a lot just by watchin'

Yogi Berra

19th – 20th November 2005

Observations of CMB fluctuations

- 1992: DMR instrument on COBE satellite detects Sachs-Wolfe fluctuations with $\delta_k \approx 2 \times 10^{-5}$.
- 1992-2000: many instruments detect fluctuations on both large and small scales.
- 2000: BOOMERanG balloon experiment confirms 1^{st} acoustic peak at $I \approx 220 \rightarrow$ nearly flat universe, $\Omega_0 \approx 1$.
- 2000: Cosmic Backgound Imager confirms damping.
- 2001: BOOMERanG and DASI confirm 2nd peak.

4 years of data from COBE

19th – 20th November 2005

BOOMERanG Launch

19th – 20th November 2005

Ĥ

MANCHE

BOOMERanG (contd)

Gondola

MAXIMA

Millimeter Anisotropy eXperiment IMaging Array

19th – 20th November 2005

MAXIMA Focal Plane

19th – 20th November 2005

BOOMERanG vs. COBE

19th – 20th November 2005

MAXIMA map

19th – 20th November 2005

BOOMERanG vs. Simulations

19th – 20th November 2005

2002 Angular Power Spectrum

FIG. 2. Combination of all data from Figure 1. These error bars include the effects of beam and calibration uncertainties, which causes long-range correlations of order 10% over the peaks. In addition, points tend to be anti-correlated with their nearest neighbors, typically at the level of a few percent. The horizontal bars give the rms widths of the window functions.

19th - 20th Nove

Constraints

- Two independent teams find same results for SNIa
- With $\Omega_{\rm m} \approx 0.3$,
- $\Rightarrow \Omega_{\Lambda} \approx 0.7.$
- Implies flat universe:
 Ω₀ ≈ 1.
- Concordance Model.
- Worry: cosmological evolution of SNIa?

Cosmic Contents

19th – 20th November 2005

B2K3 Flight

19th – 20th November 2005

Very Small Array

Cryostats on table

Source subtraction dishes

19th – 20th November 2005

VSA maps

19th – 20th November 2005

VSA Spectrum

Cosmic Background Interferometer

WMAP: L2 Orbit

19th – 20th November 2005

MANCHESTER

WMAP: Scanning

19th – 20th November 2005

MANCHESTER

A Flat Universe?

19th – 20th November 2005

Old Universe - New Numbers

 $\Omega_{\rm tot} = 1.02 \pm 0.02$ $\eta = (6.1^{+0.3}_{-0.2}) \times 10^{-10}$ w< -0.78 (95% CL) $\Omega_b \Omega_m^{-1} = 0.17 \pm 0.01$ $\Omega_{\Lambda} = 0.73 \pm 0.04$ $\sigma_8 = 0.84 \pm 0.04$ $\Omega_b h^2 = 0.0224 \pm 0.0009$ $\sigma_8 \Omega_m^{0.5} = 0.44 + 0.04$ $\Omega_b = 0.044 \pm 0.004$ $Z_{\rm dec} = 1089 \pm 1$ $n_b = (2.5 \pm 0.1) \times 10^{-7} \text{cm}^{-3}$ $\Delta Z_{\rm dec} = 195 \pm 2$ $\Omega_m h^2 = 0.135^{+0.008}_{-0.009}$ $h = 0.71^{+0.04}_{-0.03}$ $\Omega_m = 0.27 \pm 0.04$ $r_{\rm s} = 147 \pm 2 \,{\rm Mpc}$ $\Omega_v h^2 < 0.0076 (95\% \text{ CL})$ $d_C = 14.0 + 0.2_{-0.3}$ Gpc $m_{\rm v}$ < 0.23 eV (95% CL) $\theta_{A} = 0.598 \pm 0.002$ $T_{\rm cmb}$ = 2.725 ±0.002 K $l_{A} = 301 \pm 1$ $Z_r = 20^{+10}_{-9}$ (95% CL) $t_0 = 13.7 \pm 0.2 \text{ Gyr}$ $t_r = 180 + 220_{-80}$ Myr (95% CL) $t_{\rm dec}$ = 379 $^{+8}_{-7}$ kyr $r(k_0 = 0.002 \text{ Mpc}^{-1}) < 0.71(95\% \text{ CL})$ $\Delta t_{\rm dec} = 118^{+3}_{-2} \,\rm kyr$ $A(k_0 = 0.05 \text{ Mpc}^{-1}) = 0.833 ^{+0.086}_{-0.083}$ $Z_{eq} = 3233^{+194}_{-210}$ $n_{\gamma} = 410.4 \pm 0.9 \text{ cm}^{-3}$ $\tau = 0.17 \pm 0.04$ $n_s = 0.99 \pm 0.04$ (WMAP only) $n_s(k_0 = 0.05 \text{ Mpc}^{-1}) = 0.93 \pm 0.03 \text{ with } dn_s/d \ln k = -0.031 \pm 0.016 + 0.018$

These "best" cosmological parameter values are from a combination of a wide variety of cosmological measurements, including the WMAP, COBE, CBI, and ACBAR CMB measurements and 2dFGRS, HST, SNIa, and Lyman-alpha forest measurements.

CMB Results since WMAP

- VSA high-*l* results (2004)
- CBI Polarization (2004)
- ARCHEOPS Dust Polarization (2004)
- COSMOSOMAS Spinning Dust (2005)
- Boomerang Polarization (2005)
- WMAP NG analysis (2003-05)
- WMAP, VSA, CBI still observing.

Summary of current data

Current Polarization Results

Weird Cosmology

- A Compact Universe?
- Signatures:
 - Repeating structures (cosmic crystallography)
 - Not seen yet
 - Less power at very low
 - Yes!
 - Circles in the sky
 - No, still looking

Weird Cosmology

- Non-Gaussianity
 - Any sign of structure in the phase of CMB fluctuations signals physics beyond the inflationary paradigm
- Axis of Evil:
 - Quadrupole and octopole line up!
- North vs. South
 - Peculiar structures in southern Eliptic/Galactic hemisphere.

Tegmark et al. 2003

ESA's *Planck* mission

- "Last word" in CMB temperature observations: accuracy set by foreground residuals
 - Resolve "cosmic degeneracies"
 - Non-Gaussian cosmology
 - Clusters: SZ, lensing
 - Strings
 - ???
 - Galactic & extragalactic astronomy
- Polarization: best power spectrum yet
 - Low SNR but 12 million pixels
- First chance of detecting primordial B-mode polarization

Planck mission status

- November 2005:
 - Delivery of Flight Model components ongoing
- Launch: August 3rd 2007
- PV Phase: Oct-Dec 2007
- Survey starts: Jan 2008
- Survey ends: Feb 2009
- Proprietary period ends: Feb 2011.

Planck Cryo Qualification Model under test at CSL, Liège.

Planck Instrument

- LFI front end connected to warm backend in service module via waveguides.
- Elaborate thermal control to keep 250 K temperature differential
- Also lines to coolers in the SM.
- HFI self-contained in helium dewar, only data connections to SM.

South Pole: QUaD

Uses old DASI mount

19th – 20th November 2005

South Pole: BICEP

19th – 20th November 2005

New Projects

- Planck
 - All-sky, high precision
 - High-l
 - CMB & foreground polⁿ
- Balloon
 - Boomerang 2K3 (Dust polⁿ)
 - EBEX (Polⁿ)
 - SPIDR (Polⁿ)

- Ground-based:
 - QUAD (Polⁿ)
 - BICEP (Polⁿ)
 - CLOVER (Polⁿ)
 - GEM-P (Synchrotron polⁿ)
 - QUIET (Polⁿ)
 - VSA+ (Higher *l*)
 - C-BASS (Synchrotron polⁿ)

