First Results from Herschel deep extragalactic surveys

Dieter Lutz

Max-Planck-Institut für extraterrestrische Physik

Colloquium Heidelberg June 15, 2010

Herschel in a Nutshell

- Large telescope
 - 3.5 m diameter
 - collecting area and resolution
 - Reduced source confusion wrt. IRAS, ISO, Spitzer, Akari
- New spectral window
 - 55 672 µm: bridging the far-infrared & submillimetre
- Novel instruments
 - wide area mapping in 6 'colours' between 70 and 500µm
 - imaging spectroscopy
 - very high resolution spectroscopy

HIFI: 157-625µm heterodyne spectrometer (PI Th. De Graauw, now F. Helmich)

SPIRE: 194-672µm camera and low to medium resolution spectrometer (PI M. Griffin)

PACS: 55-210µm camera and medium resolution integral field spectrometer (PIA. Poglitsch)

Study the formation of galaxies in the early universe and their subsequent evolution

Part of COSMOS 2sq.deg. 24+100+160µm

Investigate the creation of stars and their interaction with the ISM

© ESA & PACS/SPIRE + HOBYS Key Programme Consortia

Examine the molecular chemistry of the Universe

Launch 14 May 2009

The deepest Herschel-PACS blank fields taken to date

PEP GOODS-N 30h 100+160µm during Science demonstration phase ~300 sources

PEP GOODS-S 113+113h 70+100+160µm ~1000 sources

From MIPS to PACS

GOODS-S RAPS 160µmm PEPEtetæram

PACS Evolutionary Probe (PEP) - Fields

• PEP is the major Herschel 100/160µm extragalactic survey of key multiwavelength fields

Field	Area	Total Exp. [hours]
COSMOS	85'x85'	213
Lockman Hole	24'x24'	35
E-CDFS	30'x30'	35
Groth Strip	67'x10'	35
GOODS-S	10'x15'	113 113
GOODS-N	10'x15'	30

- +10 lensing galaxy clusters
- Coordinated with Hermes for SPIRE coverage
- Hermes and Atlas extend to wider+shallower PACS coverage
- GOODS-Herschel will go deeper on (parts of) GOODS fields
- Herschel lensing survey substantially extends the number of lensing clusters

HERMES team Cooray+ 10

Clustering analysis ~5 10¹²M_{Sun} halos

H-ATLAS 4*4deg 250/350/500µm

H-ATLAS Negrello+ and follow up teams with SMA, ZSPEC, IRAM PdB, Keck...

J1148+5251 z=6.42 QSO

Leipski+ 10

Resolving the Cosmic Infrared Background with PACS

Lagache et al. 2005 ARAA

Dole et al. 2006

Far-infrared counts

Berta+ 2010, Altieri+ 2010, and in prep.

Far-infrared counts

Berta+ 2010, Altieri+ 2010, and in prep.

Resolving and slicing the CIB

Resolved into individual sources: ~55% @ 100µm ~70% @ 160µm

Berta+ 2010 and in prep.

The need for far-IR calorimetric star formation rates

- Our community has been relying almost exclusively on extrapolation from the optical and mid-infrared as the avenue towards studying galaxy evolution.and star formation rates
- We know this extrapolation is pretty good
- But how good?

From 24µm

From rest frame UV

From submm/radio

COSMOS 24µm image

The star formation rates of typical z~2 star forming galaxies

- BzK star-forming galaxies in GOODS-N, K_{AB}<22, z=1.5-2.5
- Far-infrared luminosity from 160µm flux, redshift, Chary & Elbaz 2001 SED

Elbaz et al. 2010

Nordon et al. 2010 (arXiv)

Z~2: Extrapolation from 24µm overpredicts FIR

Z~2: Extrapolation from rest frame UV slightly overpredicts FIR

Modest modification to extinction law needed?

Nordon et al. 2010 (arXiv)

Towards reconciling observed and theoretical star formation rates

Daddi+ 07

Dave 08

The most luminous star forming galaxies

Star formation rates $\sim 1000 M_{Sun}/yr!$

.. Note previous selection effects

Magnelli et al. 2010 (arXiv)

24µm and radio-based star formation rates vs. Herschel

Magnelli et al. 2010 (arXiv)

Colder SEDs at a given IR luminosity

Hwang+ in prep., Elbaz+10

CO emission from submillimeter galaxies (Tacconi et al. 2006, 2008, Engel et al. 2010) 1" (8 kpc) N2 850.2 (2.45) -220 HDF 169 (1.2) +200-250 +250Dubinski+ HDF 76 (2.20) SMMJ09431 (3.35) -100 H7+500+100+60H6 HDF 242 (2.49) +50-100 -150 SMMJ105141 (1.21) +300+100-350

The co-evolution of AGN and star formation

BzK-15504 z~2.38 rotating disk with central AGN (Genzel+06,08)

Models of merging galaxies (Hopkins+06)

Using FIR to measure star formation

(QSO SEDs from Netzer+07)

FIR detection rate 21% for X-ray AGN from 2Msec Chandra

+Stacking

Shao et al. 2010 (arXiv)

Two modes of AGN / host coevolution: Merger vs. secular

Shao et al. 2010 (arXiv) (also Lutz et al. 2010 submm results)

The role of environment

Local Universe (SDSS)

Z~1 Herschel Popesso et al. in prep.

'Reversal' of star formation rate-density relation (see also Elbaz+07, Cooper +08)

FIR-based determination of the specific star formation rate

Rodighiero et al. 2010 (arXiv)

Surprisingly large dust masses of submillimeter galaxies

... more dust than expected for gas phase metallicity Dust properties? Layering?

Santini et al. 2010

AGN(?) feedback at work...

OH absorptions in the AGN ULIRG Mrk 231

Fischer et al. 2010 (arXiv). First estimates:

- outflow mass of 7x10⁷ Msun
- outflow velocities of -1400 km/s
- Mechanical energy $\geq 10^{56}$ erg/s

See also Feruglio et al. 2010 arXiv (Mrk 231 CO IRAM PdB)

SHINING Herschel key programme (Sturm et al.) – Spectroscopy of nearby IR bright galaxies

Summary

Jose Acosta Bruno Altieri Paola Andreani Herve Aussel Stefano Berta Angel Bongiovanni Damien Le Borgne **Nicolas Bouche** Drew Brisbin Hector Castaneda Antonio Cava Jordi Cepa Andrea Cimatti Emanuele Daddi Helmut Dannerbauer Helena Dominguez-Sanchez David Elbaz Emeric Le Floc'h Natascha Förster Schreiber Reinhard Genzel Ignacio Gonzalez **Gianluigi Granato** Andrea Grazian Carlotta Gruppioni Martin Harwit

Ho-Seong Hwang **Georgios Magdis** Benjamin Magnelli Roberto Maiolino Leo Metcalfe Raanan Nordon Koryo Okumura Ana Perez Ismael Perez Fournon Albrecht Poglitsch Paola Popesso Francesca Pozzi Laurie Riguccini **Giulia Rodighiero** Jose Miguel Rodriguez **Amelie Saintonge** Fadia Salmi Miguel Sanchez Paola Santini Li Shao **Eckhard Sturm** Linda Tacconi Ivan Valtchanov Michael Wetzstein **Eckhard Wieprecht**

 More than half of the cosmic infrared background resolved into individual sources

• Star formation rates: mid-IR and to some extent also UV over-estimate SFR at z~2.

Huge star formation rates in Submillimeter
Galaxies confirmed

• AGN host star formation rates suggest 2 evolutionary modes: merger vs. secular

Reversal of z~1 star formation rate-density relation

Lockman Hole