Towards a new paradigm for early-type galaxies

Harald Kuntschner

Heidelberg, 24 May 2011

Galaxy Formation and Evolution

- Galaxies form by hierarchical accretion/merging
 - Matter clumps through gravitation
 - Primordial gas starts forming first stars
 - Stars produce heavier elements ('metals')
 - Subsequent generations of stars contain more metals
 - Massive galaxies form from an assembly of smaller units
- Galaxy encounters still occur
 - Deformation, stripping, merging
 - Galaxies continue to evolve
- Central black hole also influences evolution

Millennium (Springel et al. 2005)

Observational Approaches

- Study (very) distant galaxies
 - Observe evolution (far away = long ago)
 - Objects faint and small: little spatial information
- Study nearby galaxies
 - Light not resolved in individual stars
 - Objects large and bright:
 internal structure accessible
 - Infer evolution through "archaeology"
 - Fossil record is cleanest in early-type galaxies
- Study resolved stellar populations
 - Ages, metallicities and motions of stars
 - Archaeology of Milky Way and its neighbours

What are the early-type galaxies?

- SO galaxies: contain stellar disks, no gas or star formation.
- Ellipticals: do not contain stellar disks, no gas or star formation.
- M_B < -17
- Mass > a few $10^9 M_{sun}$

Galaxy classification?

credit: HST

- E + SOs ~40% of (SDSS) stellar mass (Bernardi et al. 2010)
- E/SOs are overall red (old), SOs can have younger stars
- Mergers → important to build E's
- Two flavours of E's ? (Davies/Nieto/Kormendy/Bender/Lauer...)
 - Boxy with flat cores or light deficit, anisotropic, triaxial
 - Disky with cusps or light excess, nearly isotropic, oblatespheroidal

Two flavours of ellipticals from photometry

- Disky ellipticals are intermediate between big ellipticals and lenticulars (Kormendy & Bender 1996)
- Almost all `radio-weak' ellipticals could have disks containing ~ 20% of the light (Rix & White 1990)
- Big and small ellipticals also distinct in their luminosity profile (Faber et al. 1997; Trujillo et al. 2004)
- Light Excess/Deficit also defines a "E-E dichotomy" (Kormendy et al. 2009)

Two flavours of ellipticals from kinematics

Hierarchical Galaxy Formation

- Bimodal galaxy colour distribution needs merging + feedback to jump from blue to red (Baldry et al. 2004, Bell et al. 2004)
- For most-massive objects, need merging *within* red sequence
- Red sequence is a mixture of remnants from gas-rich (blue cloud) and gas-poor (red sequence) mergers (e.g. Cattaneo et al. 2006)
 A "dichotomy" on the red sequence?

Some E's have "SO-like kinematics"

Photometric Classification

- E's are spheroidal
 - ➔ look similar from all directions
- S0's contain disks
 - → look like E's if near face-on

Need for a more physical classification

The Sauren Project

- Systematic study of *representative* sample of 48 nearby early-type galaxies and 24 spiral bulges (Sa)
- Ground-based integral-field spectroscopy + imaging
 - Kinematics of stars/gas and line-strengths
 - Large-scale surface-brightness distribution
- Hubble, SPITZER (IR) & GALEX (UV)
- Construction of models to determine:
 - M/L, intrinsic shape and stellar motions
 - Mass of central black hole, and relation to galaxy structure
 - Origin and properties of ionised gas
 - History of metal enrichment of the stars

SAURON *velocity maps* En

FR/SR: Revisiting the V/ σ diagram

- Fast-rotators: family of oblate systems
- Slow-rotators: distinct likely triaxial

Cappellari et al. (2007)

Stellar populations Are all ellipticals red and dead?

Kuntschner et al. 2006

Estimating Ages and Metallicities

NGC3032

10

0

10

Old

Star-formation in disks

- Young stars in early-type galaxies are connected to disk-like structures and kinematics -> fast rotators
 - Low mass galaxies show young stars over large radial extent produced in gas rich mergers?
 - Intermediate mass galaxies show some examples of localized, central young disks within older rotating structures (internal/external gas origin?)

Can we find less prominent, "aged" examples of secondary star-formation in disks?

Morphology - Kinematics - Mgb connection

0

Mgb

10

-20

20

10

0

-10

-20

-20

-10

0

-10

10 20

Kuntschner et al. 2006

Ι

V

See also e.g. Fisher et al. 1996

10

Metallicity enhanced disks

Flattened components range from young circumnuclear disks and rings with continuing star formation and increased metallicity, to old structures with increased metallicity and reduced $[\alpha/Fe]$

What about KDCs ?

The showcase of NGC4365

- Schwarzschild modeling shows KDC to be the result
 of *prograde* and
 - *retrograde* short axis orbits *superposition*
 - KDC is "tip of the iceberg" rather than a well localized structure

Global 1 R_e age, Z, [Mg/Fe] - trends

Consistent with e.g., Thomas et al. 2005; Bernardi et al. 2005, 2006; Kuntschner et al. 2002; ...

~40% of ETGs show signs of young stars

Low mass systems show strong scatter to young ages -> growth of red sequence

Mass - metallicity correlation

Fast rotator

Slow rotator

Mass - [α /Fe] correlation

The Next Step A Complete Survey

- Need volume-limited sample
 - To understand the distribution of Fast & Slow Rotators
 - To determine the importance of "wet" / "dry" mergers
 - To provide strong low-z constraints on simulations
 - To better understand the role of SF and feedback

- Observe a complete volume limited sample of 260 ETGs
- Parent sample:
 871 nearby galaxies
- Morphological selection: No spiral arms (DSS/SDSS)
- No colour cut

00560	IC0598	100676	·· IC0719	CC782	C1024	IC3631	NGC0448	* %GC0474	NGC0502	NG20509	NG20516	NG20524
						•		W.				
SD	50/c	50	50	Sb	50	50	50	50	50	50	. 50	. 50
NG00525	Nacubal	NGCLOSD	KGC0770	NGCOEZI	NGOUSSE	N301023	NGC112	AGC 1222 *	NGC1248	NGG1286	NG. 1289	1001860
50		-		•	50	\$	50	50	50	50	50	50
NGE2481	NCC2549	N0C2577	NDC2592	NGC2594	NGC2679	NGC2685	NGC2695	NGC2698	NCC2699	NGC2764	NG:2768	NGC2778
SO/c, NGC2824	S0 NGC2852	SO NGC2859	E NGC2880	90/a NGC2950	SO NGC2562	SO NGC2974	90 NGC3032		E NGC3098	SC NGC3156	E NG33182	E NGC 3193
										100		
• so	Sa	so	- so ·	SD	so	E.	so	sa	SC	sc	50/a	E
NGC3225	NGC3230	NGC3245	NGC3248	NGC3201	NGC3377	NG03379	NG0.3384	NGC 3400	NGC3412	NG33414	NG23457	NGC3458
				-		and and					the second	•
NGC3489	50 NGC 3499	NGC3522	NGC3530	NGC3595	NGC3599	NGC 3605	NGC 3607	NGC 3608	50 NGC3610	NGC 361 3	NG23519	VCC 3626
			-									
50 NGC 35 30	50/c NCC3640	E NGC 3641	50/0 NGC3648	SO NCC3658	SO NCC3665	E NGC 3674	90 NCC 3694	E NGC 3757	E NGC 3796	E NCC3838	S0 NC23941	50 NCC 3945
SO	£		so	so .	so	so		SO	\$2/a	<u>90/a</u>	SÓ	50
NCC3998	NCC4025	NCC4036	N0C4078	N004111	NCC4119	ND04143	NCC4150	NCC4165	NCC4179	ND24191	NC24203	NCC4215
									1			
SD NGC4233	50 NGC+249	50 NGC4251	50 NGC4255	50 NGC4250	SC NGC4261	50 NGC4262	50 NGC4284	E NGC4267	SC . NGC4268	SC NGC4270	NGC4278	50 VCC4281
			1000		1.1							
50 NGC4283	50 NGC4 324	SO NGCA 339	50 NGC4340	50 NGC4 342	E NGCA SAR	SO NGCA SOF	50 NGCA 385	50 NGC4 371	SD/e	5C	E	50
	A CONCE	1001055	indents to		inder eine			NOOTOT T				100 002
e i	50		50	- so	so	so		50	6	sc	so -	- S0
NGC4387	NGC+408	NGC4417	NGC4425	NGC4429	NGC4434	N3C4435	NGC4442	NGC4452	NGC4458	· NGC4459	NG24461	NG54472
		1								4		
E NGC4473	E NGC4474	SO NGC4476	50 NGC4477	SO NGC4478	E NGC4483	SO NGC4486	30 NGC4486A	SO NGC44B9	E NGC4494	SC NGC4503	S0 NG24521	E \GC4526
											1.1.1.1.1	-
E	50	50	50	E	śq	E	E	E	E	SC	· 50/a	50
19904020	NUC+D+D	- NOC4550	1004001		HOCADOA	NOCHO? C	11004376	NGC-390	NGC4608	1004912	100+02	100-020
50	50	50	E .	F		50	50	30	30	50		50
NGC4624	NGC+636	NUCA635	NGC4643	NGC4649	NGC466C	NGC4684	NGC4580	NGC4694	NGC4697	NGC4/10	NG04735	N604753
										-		
.50 -NGC4754	NGC4752	SO NGC4833	50 NGC5103	E. NGC5173	E NGC5198	50 NGC5273	90 • NGC5308	30 x0C5322	. Е NGC5342	NG05353	E NG25355	50 VCC5358
	• \						-					1
50 .	50	50/0	50/0	E	E	50	50	E	SC NCC2557	50	SO	50/6
Inacaora	NUCDAZZ	N(X.347.3	NUCCHING	MUÇMBT	M.C.340.3	Nocovac	Hocadoo	NGC3307	Not blid	14000004	AGaaaro	Vocable
50	su	sola	Sa		so	50	E	su		sc	Server -	. E
NGC561 1	NGC5631	NGC563B	NGC5687	NGC5770	NGC5E13	NG25831	NGC5838	NGC5839	NGC5845	NG05846	NG25354	NGC5864
SD NGC5866	50 NGC5659	E NGC6010 -	50 NGC6014	SÓ NGOSC17	E NGC8149	E NGC627E	.50 • NGC6547*	50 NGC6548	E NGC6703	• NGC6798	S0 NGC7280	50 VGC7332
1		-						10				
50	50	50/0	50	E	50	50	50	50.	50	50	50	50
-NGC/454	NUC (457	N0C7455	NDC7893	NUCHATO	-UCUTEUSS	PCC028887	P00029521	P00035754	-01042549	PGCJ44433	P30353395	PSC051753
- e	Sn	50	50	so	so	S0./a	51/5	30		\$0/a	50./a	50/#
PGC054452	PGC056732	PGC058114	PG8061468	P0C071531	P0C17C172	UCC33960	U0C04551	UGC05408	UCODEDE2	UGC06176	06008876	UCCO9519
				•								
· SD .	SO	SO	• S0/a	E	. E *		- SO	SD	SC	SC	SO/a	SO

JLAS Sample Properties Luminosity-size relation Luminosity function Bell et al. 2003 -2.0131 9 164 142 159 118 81 10 16 Atlas^{3D} 4.3 51 44 40 23 12 -2.5 ∞ spirals Re (kpc) -3.0 Parent sample: 871 -3.5 **ETGs: 260** -4.0 -21 -22 -23 -25 -26 -24 10¹⁰ M۴ Galaxies on the red sequence 3.5 C Red Sequence Σ₅₀ (L_{ok}/kpc²) 10⁹ 3.0 2.5 ٦L 2.0 Fast Rotator 10^{8} Slow Rotator 1.5 Blue Cloud 💩 Spiral 10¹⁰ 10^{11} 1.0 티 Luminosity $(L_{\Theta \kappa})$ -22 -21 -20 -19 М,

Cappellari et al. (2011)

Multi- λ approach

- SAURON (IFU) Large Program on WHT (38 nights in 4 runs)
- *HI survey* ~150 northern galaxies with WSRT (excl. Virgo)
- Radio continuum VLA
- Single-dish CO survey of full sample IRAM 30m
- CO interferometry of detections with CARMA
- *Photometry* multi-bands (INT, 2MASS, SDSS, MegaCam)
- Archival data (SDSS, Chandra, XMM, GALEX, HST, Spitzer)

Modelling and Simulations

- New modelling for stellar populations
- Dynamical modeling, Mass-to-Light ratios
- Suite of high-res numerical simulations of mergers
- High resolution of gas in early-type galaxies
- Simulations of galaxy formation and evolution in a cosmological context
- Semi Analytic Models

A few spectra and maps...

0000000000000000000000 0 👝 🏟 💿 💽 🥌 🧔

~~~ a 19 **a 8 19 19 10 19 10 10 17 10 19 19 19** 19 19 **ACCOLOGIANTICICO** FINERAL FILLER FOR FIL

de-		•	-			
		0			0	
	0		•	0	0	
			·	10		mally share
it.			.	*		
:0	·		. 0 ⁴ .	•		

WW Muno	And Marine	Aliger and	. 2.5.26.4128
	i hundred in the second	MAN INNI	2 2 2 2 7 7 2
			2 2 2 2 2 2 2 2 2
	August A	million fredhing	

Mart	The state of the state
	1200 1200

mit 194 Junly

M	
	A bridge
	and the second

💊 🍐 💣 🏠 🖏 🗞 🕼 🍰 🚳 🍐 🐨 😒 😤 ta 👝 🏠 🚮 ൽ N 784 567 555 10 10 10 155 567 567 16 10 10 888892360888 2 🕵 và 这 💽 📣 🐼 😂 🌠 🧿 🐼 🐼 🥥 💻 n 🔊 🔕 🗫 🍐 🏟 🖉 🎭 🌠 🔹 🏠 🎓 🎓 🖝 ka R 💫 🥂 🖉 🗺 🐔 🚡 💥 🔂 🌢 🏹 🚮 🕃 🔘 🗔 🕱 é 👌 jõ 🄄 🐴 🚳 📦 👘 蒙 🗑 🗿 💆 🛅 🗑 🧭 s 12 s in 12 s i k 🖉 🖸 🐨 🖉 🐼 🔄 🖓 🖉 🐼 🐨 🗃 🗃 e 🗱 🔯 😒 🔁 🗧 🗿 🖉 🧔 🖉 🚳 💩 🗟 😂 🙋 S 😹 💥 🖄 📖 🥶 😤

20 10 -10 -20	Ø		1	4			(0			
1	0-40-20 0 20 40	60-40-20 0 20 4		0-60-40-20 0 20 4	-00-40-20 0 20 40	20 10 -10	-50 0 50				
-30 10 10	6949200 20-40 60	-6949200 20406	0 -6949200 20406 = +	0 -6949200 204060	-6949200 204060	20	-45-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 4
-10L	-40-20 0 20 40	-40-20 0 20 4	0 -40-20 0 20 4	0 -40-20 0 20 40	-40-20 0 20 40	10	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 4
-191 381	403030100 103030	-46362910010203	50 -463624100 10203	0 -40302010010203	-643620100 102030	1 =19 55	469624000 1020 90	405626100 2020004	0-443424100 102030	40 443424100 1020304	- 443424200 10203
=19	-40-20 0 20 40	-40-20 0 20 4	0 -40-20 0 20 4	0 -40-20 0 20 40	-40-20 0 20 40	-10 -20	-60-40-20 0 20 40	5 -50-40-20 0 20 40	-60-40-20 0 20 4	-60-40-20 0 20 40	-60-40-20 0 20 -
-10	463624100 1020 504	0 40 30 240 00 10 20 3	040-44334240.00 00 203			-10 -20	-40-20 0 20 40 1	60 -40-20 0 20 40 6	0 -40-20 0 20 40	50 -40-20 0 20 40 6	-40-20 0 20 40
10 -10 -20	•					-10	1	1		10 M	1
10	0-40-20 0 20 4					-10	0				
80	43424100 1020304	44343434100 102030	He 443420100102030	48-483424100 102030	#443434300 1020 30 Å	∘	40-40-20 0 20 40	68465-46-20 0 20 40 I	9840-40-20 0 20 40	6940-40-20 0 20 40 4	N465-46-20 0 20 40
-18 		-50 0 50	-50 0 50	-50 0 50	-50 0 50	-10	40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40
100-100-4	0-20 0 20 40	40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	10 -10 -20	40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40
20 10 -10 -20		40-20 0 20 40	-40-20 0 20 40	40-20 0 20 40	40.50 20.40	-19 -19	0-20 D 20 40-		40-20 0 20 40-		-20 0 20 40
18 L						-10 -20	0-20 0 20 40	-40-20 0 20 40	40-20 0 20 40	-40-20 0 20 40	40-20 0 20 40
20000	1	1	1	8	i	=19 =19	40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40	-40-20 0 20 40
200-22	<i>(</i>)	1	•	4	🥠 i	-10	40-20 0 20 40 60	-40-20 0 20 40 60	-40-20 0 20 40 60	-40-20 0 20 40 60	-40-20 0 20 40 6
26 18	<u>@</u>			1		20 10 -10 -20	40-20 0 20 40 90	-40-20 0 20 40 00	40-20 0 20 40 60	-40-20 0 20 40 00	40-20 0 20 40 0
22	0		•		0	THE REAL	0		8		

PIs: Michele Cappellari (Oxford), Eric Emsellem (ESO), Davor Krajnović (ESO), Richard McDermid (Gemini)

Team members:

Katey Alatalo, Estelle Bayet, Leo Blitz, Maxime Bois, Frederic Bournaud, Martin Bureau, Alison Crocker, Roger Davies, Tim Davies, Tim de Zeeuw, Pierre-Alain Duc, Jesus Falcon-Barroso, Sadegh Khochfar, Harald Kuntschner, Pierre-Yves Leblanche, Leo Michel-Dansac, Raffaella Morganti, Thorsten Naab, Kristina Nyland, Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Kristen Shapiro, Remco van den Bosch, Glenn van de Ven, Gijs Verdoes-Kleijn, Anne-Marie Weijmans, Lisa Young

(33 researchers in ~16 institutes)

Emsellem et al. 2011

Kinematic richness: classification

λ_{R} : Stellar angular momentum (1R_e)

λ_R : Stellar angular momentum

λ_R vs kinematic structure

λ_R vs Hubble classes

Global 1Re age, Z, [Mg/Fe] - trends

Consistent with e.g. Thomas et al. 2005; Bernardi et al. 2005, 2006; Kuntschner et al. 2002; ...

Low mass systems show scatter to young ages -> growth of red sequence

Mass - metallicity correlation

Mass - [α /Fe] correlation

Fast rotator	
Slow rotator	

McDermid et al., 2011 in prep.

Fast rotator	
Slow rotator	

Change from gas-rich to increasingly gas-poor merging and accretion

Median Δ [Z/H] = - 0.32

Kuntschner et al. in prep

Idealized binary mergers

- 1:1 and 2:1: form both FR and SR (retrograde spin wrt orbit)
- 3:1 and smaller: FR
- SR can be made in specific and violent major mergers

Idealized binary mergers

- Fastest ETGs are like spirals
- Slow rotators have KDCs, but are too flat
- Slow rotators are not velocity scaled FR

Bois et al. 2011

Semi-analytic modelling

Fraction of Fast Rotators

- Growth of SR and FR different
- Slow Rotator:
 - 50-90% of mass accreted from satellites
 - Up to 3 major mergers for most massive (z > 1.5)
- Fast Rotator:
 - Less then 50 % of mass accreted from satellites
 - Less then 1 major mergers
- Reason:
 - Slow-down and shut-down of gas cooling in massive galaxies
 - Star-formation stops in disks
 - Manifold satellite accretion causes destruction of disks and lowering of Λ_R

Khochfar et al. (2011)

Census of ATLAS3D

- 871 galaxies in the parent sample of which
- 611 are spirals &
- 260 are ETGs (70 Es & 190 S0s) of which
- 224 are fast rotators oblate, disk-related objects
- Of the 36 slow rotators 4 have counter-rot disks
- Leaving 32 true, slowly rotating, "ellipticals"
- < 4% of the parent (volume limited) population
- < 6% in mass

A change of view

Cappellari et al. (2011)

Conclusions

- Morphological E/SO separation does not capture the physical differences among ETGs and should be abandoned.
- 86% of ETGs are "disk-like" with various amounts of star formation. These form parallel tracks in the Hubble diagram: "S0", anaemic & regular spirals, each can be barred.
 - 14% of ETGs have low angular momentum (predominantly, but not exclusively, the most massive). They are the "handle" in the Hubble diagram.

• Fast Rotators:

- flattened, light & kinematically aligned ⇒ oblate, radially anisotropic, (young central disks or rings, flattened high metallicity component).
- possibly evolved from z~2 hot disks, formed via cold streams + minor mergers/occasional major merger (e.g. disks of Förster-Schreiber et al.?)

• Slow rotators:

- close to spherical (isophotes almost perfect ellipses), roundish $\varepsilon < 0.4$, often have large misalignments between light & kinematics \Rightarrow mildly triaxial, close to isotropic, can host large and old KDCs.
- likely formed though (a few) major mergers (z > 1.5) and accrete most of mass from satellites.

(Multi Unit Spectroscopic Explorer)

1'x1' FoV (Q4 2013)

90,000 spectra in one shot (Q4 2013)

Spectral range (simultaneous)	0.465-0.93 <i>µ</i> m					
Deceluine newen	2000@0.46 µm					
Resolving power	4000@0.93 μm					
Wide Field Mode (WFM)						
Field of view	1×1 arcmin²					
Spatial sampling	0.2x0.2 arcsec ²					
Spatial resolution (FWHM)	0.3-0.4 arcsec					
Gain in ensquared energy within	2					
one pixel with respect to seeing						
Condition of operation with AO	70%-ile					
Sky coverage with AO	70% at Galactic Pole					
Limiting magnitude in 80h	I _{AB} = 25.0 (R=3500)					
	I _{AB} = 26.7 (R=180)					
Limiting Flux in 80h	3.9 10 ⁻¹⁹ erg.s ⁻¹ .cm ⁻²					

PI: Roland Bacon (CRAL, Lyon, France)

