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Dark matter observations
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Galaxy rotation curves
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Cosmic background radiation



Steen H. Hansen

Cosmic background radiation
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Cosmic background radiation
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Super novae
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Super 
novae



The conclusion from
CMB, SN, LSS,...
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3 possibilities

3. there are vast amounts of dark matter on 
all scales, from dwarf galaxies, over galaxies 
and clusters, to the entire universe

1. all these independent observations are 
incorrect

2. gravitation behaves weird, and hence our 
interpretations are incorrect
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Lensing
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A galaxy cluster seen through 
lensing and x-ray observation 

Clowe et al. 2006
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A galaxy cluster seen through 
lensing and x-ray observation



Steen H. Hansen

Collision between clusters
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3 possibilities

3. there are vast amounts of dark matter on 
all scales, from dwarf galaxies, over galaxies 
and clusters, to the entire universe

1. all these independent observations are 
incorrect

2. gravitation behaves weird, and hence our 
interpretations are incorrect
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Dark matter profiles
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Numerical 
simulations
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Initial conditions known 
from observations
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Numerical 
simulations
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Simulated density profiles

Springel et al. 2008
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Simulated density profiles
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Simulated density profiles
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Simulated density profiles

Stadel et al. 2008
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Observed density profile
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Observed density profile

Pointecouteau et al. 2005

X-ray observations
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Observed density profile
slopeNFW
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Host & Hansen 2009
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Observed density profile

Limousin et al. 2006

Lensing observations
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Theoretical density profiles

GMtot

r
= −σ2

r

�
dlnσ2

r

dlnr
+

dlnρ

dlnr
+ 2β

�
Jeans equation (dark matter)

...pretty hard to solve (impossible?)
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Theoretical density profiles
Assumption

Phase-space density = 
power law in radius

ρ/σ3
r ∼ r−α

Taylor & Navarro 2001
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Theoretical density profiles
Assumption

Phase-space density = 
power law in radius

ρ(r) =
1

r7/9(1 + r4/9)6

ρ/σ3
r ∼ r−α

Taylor & Navarro 2001

Solution to Jeans equation

Hansen 2004
Austin et al. 2005
Dehnen & McLaughlin 2005
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Theoretical density profiles

The phase-space density argument does 
unfortunately not work, because different 
structures are fit with different forms

ρ/σ�
d ∼ r−α

Schmidt et al. 2009
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Theoretical density profiles

The Barcelona model:

Completely analytical

Accretion driven 
structure formation

Sersic profiles seem
to fit surprisingly well

Gonzalez-Casado et al. 2007Manrique et al, 2003
Salvador-Sole et al. 2009



Summarizing the 
density profiles
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1) Good agreement between DM numerical simulations 
and observations on cluster scale

2) Surely gas physics is crucial on small scale 
(but no disagreement between DM sim. and obs.)

3) Theory:
Phase-space argument not supported by numerical 
simulations.
Barcelona model appears impressively strong
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and now something completely new...
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Velocity anisotropy profiles

β = 1− σ2
tan

σ2
rad

Velocity anisotropy =
different “temperature” 
in different directions

Must be zero for a gas
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Simulated velocity anisotropy

CLEF cluster simulation

Host et al. 2009
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Simulated velocity anisotropy

Galaxy with baryons

Hansen & Moore 2006
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Observed velocity anisotropy

Consider an equilibrated galaxy cluster
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Observed velocity anisotropy

GMtot

r
= −kBT

µmp

�
dlnT

dlnr
+

dlnne

dlnr

�

GMtot

r
= −σ2

r

�
dlnσ2

r

dlnr
+

dlnρ

dlnr
+ 2β

�

Hydrostatic equilibrium (gas)

Jeans equation (dark matter)

If T
σ2
tot
≈ 1, then we can solve for β

Hansen & Piffaretti 2007
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Observed velocity anisotropy
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Host et al. 2009

We have to make one assumption



Steen H. Hansen

Observed velocity anisotropy

Host et al. 2009
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Observed velocity anisotropy

Host et al. 2009
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The observed galaxy clusters
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So, that means...

Dark matter structures do not achieve
equilibrium through collisions (as normal
particles do)

This gives an upper limit on the DM-DM
scattering cross section

Dark matter behaves fundamentally
different from baryons



Where should we go from 
here?

• The density is an integrated quantity         
ρ(r) =∫ f(v,r) d^3v

• the velocity anisotropy is an integrated 
quantity                                               
σ^2(r) = ∫ v^2 f(v,r) d^3v

• so, how about trying to understand f(v,r) 



Theoretical velocity anisotropy
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The velocity distribution function is exp(-v^2/T) for a normal gas,
but what about collisionless dark matter? 
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We (almost) know the 
tangential distribution function
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We (almost) know the 
radial distribution function
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We (almost) know the 
radial distribution function



Theoretical velocity anisotropy

Hansen 2009
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Analytically derived 
from “first” principle

β(r) depends
only on ρ(r)



Theoretical velocity anisotropy
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Analytically derived 
from “first” principle

β(r) depends
only on ρ(r)

Hansen 2009



Summarizing the 
velocity anisotropy

Steen H. Hansen

1) Numerical simulations show radial variation from 
about 0 (inner) to about 0.5 (outer)

2) First ever observations of this dynamical aspect 
confirm the predicted behavior

3) The analytically derived velocity anisotropy 
confirms the magnitude and radial variation

4) If this derivation is correct, then the velocity 
anisotropy is a function only of the density profile. This 
implies that we can close the Jeans equation



Conclusions
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We have impressive agreement between 
numerical simulations, observations and theory 
concerning the large dark matter structures



Conclusions
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We have impressive agreement between 
numerical simulations, observations and theory 
concerning the large dark matter structures

Thank you


