Why cosmological dark matter structures look the way they do

Steen H. Hansen, Dark Cosmology Centre, Niels Bohr Institute, Copenhagen

Heidelberg, November, 2009

Dark matter observations

 58

Galaxy rotation curves

Cosmic background radiation

ISOTROPY OF THE COSMIC MICROWAVE BACKGROUND

MAP990004

Cosmic background radiation

Steen H. Hansen
Dark Cosmology Centre

Super novae

The conclusion from CMB, SN, LSS,...

3 possibilities

1. all these independent observations are incorrect

2. gravitation behaves weird, and hence our interpretations are incorrect

3. there are vast amounts of dark matter on all scales, from dwarf galaxies, over galaxies and clusters, to the entire universe

LensingPATH OF LIGHT
AROUND
DARK MATTER **DISTANT**
UNIVERSE **OBSERVED SKY** Steen H. Hansen
Dark Cosmology Centre

A galaxy cluster seen through lensing

A galaxy cluster seen through lensing and x-ray observation

Collision between clusters

2 >>>> possibilities

1. all these independent observations are incorrect

2. gravitation behaves weird, and hence our interpretations are incorrect

3. there are vast amounts of dark matter on all scales, from dwarf galaxies, over galaxies and clusters, to the entire universe

Dark matter profiles

Numerical simulations

Initial conditions known from observations

Springel et al. 2008

Observed density profile

Observed density profile

Lensing observations

Theoretical density profiles

Jeans equation (dark matter)

$$
\frac{GM_{\rm tot}}{r} = -\sigma_r^2 \left(\frac{d \ln \sigma_r^2}{d \ln r} + \frac{d \ln \rho}{d \ln r} + 2\beta \right)
$$

...pretty hard to solve (impossible?)

Theoretical density profiles

Assumption Phase-space density = power law in radius

$$
\rho/\sigma_r^3 \sim r^{-\alpha}
$$

Theoretical density profiles Assumption Phase-space density = $n - 1.675$ Taylor & Navarro 2001 6 ρ/σ^3 Log Solution to Jeans equation $\rho(r) = \frac{1}{r^{7/9/1}}$ LCDM SCDM (M31) SCDM (MW) Bertschinger (1985) \mathbf{c} Hansen 2004 Austin et al. 2005 -2.5 -2 -1.5 -0.5 Ω -1 Log r/r_{200} Dehnen & McLaughlin 2005

 $r^{7/9}(1+r^{4/9})^6$

 $\rho/\sigma_r^3 \sim r^{-\alpha}$

power law in radius

Steen H. Hansen Dark Cosmology Centre

Theoretical density profiles

The phase-space density argument does unfortunately not work, because different structures are fit with different forms

 $\rho/\sigma_d^\epsilon \sim r^{-\alpha}$

Theoretical density profiles

The Barcelona model:

Completely analytical

Accretion driven structure formation

Sersic profiles seem to fit surprisingly well

Salvador-Sole et al. 2009

Summarizing the density profiles

1) Good agreement between DM numerical simulations and observations on cluster scale

2) Surely gas physics is crucial on small scale (but no disagreement between DM sim. and obs.)

3) Theory: Phase-space argument not supported by numerical simulations.

Barcelona model appears impressively strong

and now something completely new...

Velocity anisotropy profiles

Velocity anisotropy = different "temperature" in different directions

$$
\beta = 1 - \frac{\sigma_{\rm tan}^2}{\sigma_{\rm rad}^2}
$$

Must be zero for a gas

Simulated velocity anisotropy

Simulated velocity anisotropy

Hydrostatic equilibrium (gas)

 $GM_{\rm tot}$ *r* $=-\frac{k_B T}{\mu m_B}$ *µm^p* $\int d\ln T$ *d*ln*r* $+$ $dln n_e$ *d*ln*r* "

Jeans equation (dark matter)

$$
\frac{GM_{\text{tot}}}{r} = -\sigma_r^2 \left(\frac{d \ln \sigma_r^2}{d \ln r} + \frac{d \ln \rho}{d \ln r} + 2\beta \right)
$$

If $\frac{T}{\sigma^2}$ $\frac{T}{\sigma_{\text{tot}}^2} \approx 1$, then we can solve for β Hansen & Piffaretti 2007

We have to make **one** assumption

The observed galaxy clusters

So, that means...

Dark matter structures do not achieve equilibrium through collisions (as normal particles do)

This gives an upper limit on the DM-DM scattering cross section

Dark matter behaves fundamentally different from baryons

Where should we go from here?

- The density is an integrated quantity $\rho(r) = \int f(v,r) d^{3}v$
- the velocity anisotropy is an integrated quantity $\sigma^2(r) = \int v^2 \cdot 5 \cdot (v/r) \, d^3v$
- so, how about trying to understand $f(v,r)$

Theoretical velocity anisotropy

The velocity distribution function is $exp(-v^2/T)$ for a normal gas, but what about **collisionless** dark matter?

Theoretical velocity anisotropy

Theoretical velocity anisotropy

Summarizing the velocity anisotropy

1) Numerical **simulations** show radial variation from about 0 (inner) to about 0.5 (outer)

2) First ever **observations** of this dynamical aspect confirm the predicted behavior

3) The **analytically** derived velocity anisotropy confirms the magnitude and radial variation

4) If this derivation is correct, then the velocity anisotropy is a function only of the density profile. This implies that we can close the Jeans equation

Conclusions

We have impressive agreement between numerical simulations, observations and theory concerning the large dark matter structures

Conclusions

We have impressive agreement between numerical simulations, observations and theory concerning the large dark matter structures

Thank you

