Magnetic fields in the early universe

Kandaswamy Subramanian ^a

^aInter-University Centre for Astronomy and Astrophysics, Pune 411 007, India.

Plan

- Universe is filled with magnetic fields
- Magnetic fields in galaxies and clusters
- Why early universe?
- Early Universe Generation
- Magnetic signals in the CMB
- Primordial fields and early structure formation
- K. Subramanian, "Magnetizing the Universe", PoS proceedings, arXiv:0802.2804
- K. Subramanian, Magneic fields in the early universe, AN (in Press), arXiv:0911.4771

Measuring B fields:Synchrotron Radiation

Synchrotron polarization gives B_{\perp}

Galactic Magnetic Fields: Observations

- Synchrotron polarization and Faraday rotation probe B fields.
- M51 at 6 cm (Fletcher and Beck)
- Few ten μG mean Fields coherent on 10 kpc scales
- How do such large scale galactic fields arise? Early universe? Dynamos?

Cluster magnetic fields

- Cluster fields from Radio halos (B_{total}) and Faraday Rotation ($B_{coherent}$)
- **b** Galaxy clusters host few μ G fields correlated on 10 Kpc scales

 \otimes

Hydra Cluster

Statistical RM study, Clarke et al, 2001

Strong B in high z galaxies?

Universe increasingly Faraday opaque at high z?

Bernet et al, Nature, 454, 302, 2008; Kronberg et al. 2008

Why Early universe?

- WHY NOT? Scalar/Tensor perturbations generated. Why not B fields? In an Early universe Phase transition?
- Coherent Galaxy and Cluster fields? Dynamos?? Brandenburg & Subramanian, Phys. Rep. 417 (2005) 1-209
 - Seed field + amplification by motions (turbulence/shear)
 - Can turbulent dynamos generate required coherence?
- Could probe early universe physics
- CMB Puzzles? CBI Excess Power? Alignments? Non Gaussianities?
- Flux freezing: $B(t)a^2(t) = \text{constant}$, So $B(z) = B_0(1+z)^2$
- ► $B_0 \sim 10^{-9} G$ on galactic scales, interesting for Galaxy formation + galaxy/cluster *B*? ($\rho_B = \rho_\gamma$ implies $B \sim 3\mu$ G).

How can One Constrain/Detect Primordial B fields?

Early Universe timeline

(http://www.damtp.cam.ac.uk/research/gr/public/images)

Quantum fluctuations to Galaxies

(http://wmap.gsfc.nasa.gov/)

Primordial fields from Inflation?

Origin during Inflation: (Turner and Widrow, PRD, 1988)

- Negligible charge density breaks flux freezing.
- BUT Need to break conformal invariance of 'ED'
- Consider EM action ($F_{\mu\nu} = A_{\nu;\mu} A_{\mu;\nu} = A_{\nu,\mu} A_{\mu,\nu}$) :

$$S = \int \sqrt{-g} \, d^4x \, \frac{1}{4} F_{\mu\nu} F^{\mu\nu} = \int \sqrt{-g} \, d^4x \, \frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta}$$

- Consider conformal transformation: $g^*_{\mu\nu} = \Omega^2 g_{\mu\nu}$: implies $\sqrt{-g^*} = \Omega^4 \sqrt{-g}$, $g^{*\mu\alpha} = \Omega^{-2} g^{\mu\alpha}$, $A^*_{\mu} = A_{\mu}$, $\Rightarrow S^* = S$.
- FRW is conformal to flat space \Rightarrow can transform EM conformally to flat space. So no "amplification" of EM waves.

Primordial fields from Early Universe?

Many ways considered for breaking CI during inflation:

$$S = \int \sqrt{-g} \, d^4x \, \left[-f(\phi, R) \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - bRA^2 + g\theta F_{\mu\nu} \tilde{F}^{\mu\nu} - D_\mu \psi (D^\mu \psi)^* \right]$$

- Coupling of "EM" action to inflaton, dilaton, curvature invariants, axion, charged scalars,
- EM wave amplified from vacuum fluctuations
- $\blacktriangleright \quad \text{After reheating } E \text{ shorted out and } B \text{ frozen in.}$
- \blacktriangleright Exponentially sensitive to parameters, as need $B\sim 1/a^\epsilon$
- $B \sim 10^{-9}$ to 10^{-65} G, for $f(\phi) \sim e^{\alpha \phi}$, for $\alpha \sim 20 0$ (Ratra, 1992)
- Need huge growth of charge: a Problem? (Demozzi et al, 2009)

A worked example

- Consider $f = a^{\alpha}$, $a(\eta) = a_0 |(\eta/\eta_0)|^{1+\beta}$, (η is conformal time).
- For $\gamma = \alpha(1+\beta) \leq 1/2$, and using $(k/aH) = (-k\eta)$, (KS, 2009)

$$\frac{d\rho_B}{d\ln k} = \frac{C(\gamma)}{2\pi^2} H^4 \left(\frac{k}{aH}\right)^{4+2\gamma} = \frac{C(\gamma)}{2\pi^2} H^4 (-k\eta)^{4+2\gamma} \approx \frac{9}{4\pi^2} \mathbf{H}^4$$

(for $\gamma=-2$, c.f nearly exponential expansion $\beta \approx -2$ and $\alpha \approx 2$)

• Using $\rho_B(0) = \rho_B (a_f/a_0)^4$, instantaneous reheating, $gT^3 a^3$ conservation afterwards, gives

$$B_0 \sim 5 \times 10^{-10} \mathrm{G} \left(\frac{H}{10^{-5} M_{pl}} \right)$$

- When $f = f_0$ is constant: $F^{\mu\nu}_{; \nu} = (4\pi J^{\mu})/f_0^2$, OR $e_N \sim e/f_0^2$
- But $f = f_i (a/a_i)^{\alpha} \propto a^2$ during inflation; So theory either strongly coupled initially or very weakly coupled at end!

From Electroweak/QCD Phase transition?

- Correlation scale usually tiny: $H^{-1} \sim 1 \text{ cm}$ (EW) or $\sim 10^4 \text{ cm}$ QCD phase transition or comoving $R_H \sim 100 \text{AU}/0.1 \text{ pc}$
- Unless Helicity generation/Conservation leads to Inverse
 Cascade (Brandenburg et al, PRD 96, Banerjee & Jedamzik, 2004)
- Magnetic Helicity $H = \int_V \mathbf{A} \cdot \mathbf{B} \, dV$, $\nabla \times \mathbf{A} = \mathbf{B}$ A is vector potential, V is closed volume
- Measures links and twists in B

- Helicity is nearly conserved even when energy dissipated
- Helicity generation during EW baryogenesis: $H/V \sim n_b/\alpha!$ (Vachaspati, 2001; Copi et al 2008; Diaz-Gil et al, 2008)

Inverse cascade of helical B

• Assuming helicity conservation, $H \sim LB^2 \sim LE \sim$ constant.

so $dE/dt \sim E/(L/v) \sim E^{5/2}/H \to L \propto B^{-2} \propto t^{2/3}$ (Sim. $L \propto t^{1/2}$).

Magnetic field evolution

Banerjee and Jedamzik, PRD, 70, 123003, 2004

- $B^2/(8\pi\rho_{rad}) \sim 10^{-7} (B_0/10^{-9}G)^2$
- Conductivity high; Viscosity important around neutrino/photon decoupling.
- From top to bottom, (a) h = 1 $r = 10^{-2}$, (b) $h = 10^{-3}$ $r = 10^{-2}$ n = 3, (c) h = 0 $r = 10^{-2}$ n = 3, (d) h = 1 $r = 10^{-5}$ n = 3. $T_g = 100$ GeV.

Probing Early Universe B

- $B^2/(8\pi\rho_{rad}) \sim 10^{-7} B_{-9}^2$. Here $B_{-9} = B_0/(10^{-9}G)$
- Magnetic stress \Rightarrow metric perturbations, including Grav. Waves
- Lorentz force $\mathbf{J} \times \mathbf{B}/c \Rightarrow$ almost incompressible motions
- Overdamped by radiative viscosity, unlike compressible modes. (Jedamzik et al, 1998; KS, JDB 1998)
- Survives damping for $L_A > (V_A/c)L_{Silk} \ll L_{Silk}$
- CMB signals from metric and velocity perturbations
- Post recombination: $n_{rad}/n_b \gg 1 \Rightarrow$ compressible motions \Rightarrow seeds $\delta \rho / \rho \Rightarrow$ First Structures
- \blacktriangleright B field Dissipation \rightarrow Ionization, Heating, Molecules

Coherent primordial nG fields potentially detectable

$$\frac{\Delta T}{T}(\theta,\phi) = \sum_{lm} a_{lm} Y_{lm}(\theta,\phi); \qquad \langle a_{lm} a_{l'm'} \rangle = C_l \delta_{ll'} \delta_{mm'}.$$

$$\frac{\langle (\Delta T)^2 \rangle}{T^2} = \sum_l C_l \frac{2l+1}{4\pi} \approx \int \frac{l(l+1)C_l}{2\pi} d\ln l$$

CMB Anisotropies – Observations

 \otimes

CMB signals from tangled B fields

- Scalar Modes Subdominant to Inflation generated signal, (Shaw and Lewis, 2009, M. Giovannini, 2008, Yamazaki et al. 2008)
- Vortical motion of fluid at LSS (Vector modes) (KS & Barrow 1998, KS, Seshadri, Barrow 2003)
- Ferreira, Kahniashvilli, 2000 ...)
- Polarization B (Curl) modes due to Vectors/Tensors Scalars only induce E (Gradient) modes (Seshadri & KS, 2001; Mack et al 2002; Lewis 2004; Gopal & Sethi, 2005)
- Faraday Rotaion Converts E to B mode signals
- Helical fields can also cause T B, E B cross correlations!
- Non Gaussian Statistics (Seshadri, KS 2009, Caprini et al 2009)

Primordial few nG magnetic fields potentially detectable using the CMB

Vector mode CMB Signals

B = 3 nano Gauss

- Vortical motion of fluid at LSS (Vector modes)
- Can partially explain CBI Excess?
- Non Gaussian Statistics because $F_L \propto B^2$

KS, JDB, PRL, 81, 3375 (1998); MN, 335, L57 (2002); KS, TRS, JDB, MN, 344, L31 (2003)

CMB Polarization – Vector Modes

B = 3 nano Gauss

- Thomson Scattering + quadrupole at LSS \Rightarrow Polarization
- B Type Polarization (unlike inflationary Scalar Modes)
- Signals below Silk Damping scale ($l \ge 10^3$)

 \otimes

TRS, KS, PRL, 87, 101301 (2001); KS, TRS, JDB, MN, 344, L31 (2003)

CMB signals: scalar+Tensor + Vector

 $B_{\lambda} = 4.7 \mu$ G, $n \sim -3$, Including passive component, Shaw & Lewis, arXiv:0911.2714

 \otimes

Structure formation signals

- Extra power in the matter power spectrum on small scales (Gopal, Sethi, 2003)
- Damping of B field energy by ambipolar diffusion and decaying turbulence, can heat/ionize universe at $z \sim 100$ (Sethi, KS 2005; Schleicher, Banerjee, Klessen, 08).
- ► Altered Visibility function → Additional CMB anisotropies
- First dwarf galaxies form at high z > 10 even for $B \sim 0.1 nG$, but for masses larger than magnetic and thermal Jeans mass.
- B field induced first structures Reionization? (Sethi, KS 2005, Tashiro, Sugiyama, 2006; Schleicher, Banerjee, Klessen, 08).
- Influence formation of first structures through catalyzing Molecule formation (Sethi, Nath, KS 2008; Schleicher et al 2009)
- Probe through redshifted HI 21 cm signals (Tashiro, Sugiyama, 06;Schleicher, Banerjee, Klessen, 09; Sethi, KS 09)

Modified matter power spectrum

Gopal, Sethi, JAA, 2003; 3 nG, n = 0, -1, -2, -2.9; LCDM

Post Recombination Blues

 Ambipolar damping and Turbulence decay
 ⇒ gradual re-ionization
 ⇒ Modified Visibility Function (Sethi, KS MN, 2005)

FIRST STRUCTURES SEEDED BY PRIMORDIAL B FIELDS

Even B = 0.1nG can induce $10^6 M_{\odot}$ dwarf galaxy collapse at high z > 15 causing early re-ionization (Sethi, KS MN, 2005)

Global 21 cm signals from reionization

Heidelberg Joint Astronomical Colloquium, 1st December, 2009 - p.25/28

HI correlation signals from reionization

Both ionization and density inhomogeneities contribute

Final Thoughts?

- Universe is full of magnetic fields!
- Origin from the early universe phase transitions?
- Primordial fields will leave signatures in the CMB, Structure formation.
- Redshifted 21 cm signals detectable with upcoming radio telescopes for $B_0 \sim 0.5$ nG
- Other Probes: Radio RMs (SKA) and High energy CRs
- Dynamos certainly needed to maintain fields BUT Need to understand their saturation better

THANK YOU!

Heidelberg Joint Astronomical Colloquium, 1st December, 2009 – p.28/28